首页> 外文OA文献 >Sensitivity analysis via Karhunen-Loève expansion of a random field model: estimation of Sobol' indices and experimental design
【2h】

Sensitivity analysis via Karhunen-Loève expansion of a random field model: estimation of Sobol' indices and experimental design

机译:通过Karhunen-Loève展开随机场模型进行灵敏度分析:Sobol指数估算和实验设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We use the Karhunen-Loève expansion of a random-field model to construct a tensorised Bayesian linear model from which Sobol' sensitivity indices can be estimated straightforwardly. The method combines the advantages of models built from families of orthonormal functions, which facilitate computations, and Gaussian-process models, which offer a lot of flexibility. The posterior distribution of the indices can be derived, and its normal approximation can be used to design experiments especially adapted to their estimation. Implementation details are provided, and values of tuning parameters are indicated that yield precise estimation from a small number of function evaluations. Several illustrative examples are included that show the good performance of the method, in particular in comparison with estimation based on polynomial chaos expansion.
机译:我们使用随机场模型的Karhunen-Loève展开来构建张量贝叶斯线性模型,从中可以直接估算Sobol的灵敏度指标。该方法结合了从正交函数族构建的模型的优点,该函数便于计算,而高斯过程模型则提供了很大的灵活性。可以导出索引的后验分布,并且可以使用其正态近似来设计特别适合其估计的实验。提供了实现细节,并指出了调整参数的值,这些调整参数可从少量函数评估中得出精确的估计值。包括几个说明性示例,这些示例显示了该方法的良好性能,特别是与基于多项式混沌展开的估计相比。

著录项

  • 作者

    Pronzato, Luc;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号